Algebraic sets + The Nullstellensatz

While it is possible to state + prove the Nullstellensate purely algebraically, it is important to give some geometric context, so we first briefly introduce some classical AG concepts:

let k be a field.

$$\frac{\text{Def:}}{Z(S)} = \left\{ (a_1, \dots, a_n) \in k^n \middle| f(a_1, \dots, a_n) = 0 \quad \forall \quad f \in S \right\}$$

This is called an algebraic set in k^{h} (which in this context can be written A^{h}).

 $\underline{\mathbf{E}}_{\mathbf{X}}: (\mathbf{i}) \quad \mathbf{if} \quad \mathbf{S} = \{\pi^2 - \mathbf{y}\} \subseteq \mathbb{R}[\pi, \mathbf{y}],$ $\mathcal{Z}(\mathbf{S}) = \frac{1}{(\mathbf{S})^2} = \frac{1}$

(2) If
$$S \subseteq S' \subseteq k[x_1, ..., x_m]$$
, Then $Z(S') \subseteq Z(S)$.
Def: If $X \subseteq k^m$, $I(X) = \{f \in k[x_1, ..., x_m] \mid f(p) = 0 \forall p \in X\}$.
Def: An ideal $I \subseteq R$ is radical if $\sqrt{I} = I$.
Check: $I(X)$ is a (radical) ideal, and $Z(I(Z(J))) = Z(J)$, for
any ideal $J \subseteq k(x_1, ..., x_m]$.

Notice that if
$$(a_1, ..., a_n) \in k^n$$
, $R = k[x_1, ..., x_n]$, then the map
 $R \longrightarrow R$
 $x_i \longmapsto x_i - a_i$

is an isomorphism, and thus induces an isomorphism

$$\frac{R}{(x_1,\ldots,x_n)} \xrightarrow{\simeq} \frac{R}{(x_1-a_1,\ldots,x_n-a_n)}.$$

The evaluation map $R \rightarrow k$ is a surjection w/ kernel $(x_1, ..., x_n)$, $f \mapsto f(o_1, ..., v_n)$

so
$$(x_1-a_1, \ldots, x_n-a_n)$$
 is always a max'l ideal.

That is, there's an injection $A^n \rightarrow \operatorname{Spec}(R)$, with image contained in the set of max'l ideals.

In fact, if $X = Z(I) \subseteq A^{u}$, then $(a_1, \dots, a_n) \in X \iff f(a_1, \dots, a_n) = O \forall f \in I$

$$\iff (x_1 - a_1, \dots, x_n - a_n) \in \vee (\mathbb{I}).$$

i.e. The algebraic sets of A^h are the closed sets of Spec(R) intersected w/ the image of A^h, and in this way A^h inherits the Zariski topology.

In fact, if
$$k = \bar{k}$$
, and $X = /\bar{k}^n$ an algebraic set, we'll see (by The Nullstellensatz) that there is a one-to-one correspondence between points of X and closed points (i.e. max'l ideals) in Spec $\binom{R'}{L(x)}$.

Note: If $k \neq \bar{k}$, we can have more max'l ideals in Spec(R). For instance, $R[x] \cong \mathbb{C}$, so (x^2+1) is maximal!

Lemma: let
$$R = k[x_1, ..., x_n]$$
, $J \subseteq R$ on ideal, and $X = \mathcal{F}(J)$.
a.) $\sqrt{J} \subseteq I(X)$, and
b.) $X = \mathcal{F}(I(X))$.

b.) Let PEX. Then if $f \in I(x)$, f(P) = 0; so \subseteq holds.

On the other hand, by a.),

$$Z(I(X)) \subseteq Z(\sqrt{J}) = X$$
. \Box

To summarize, here are the relationships we know so far between ideals and algebraic sets:

- If X is algebraic, Z(I(X)) = X, so I is a right inverse.
- $Z(x^2) = Z(x)$, so it's not injective.
- However, Z(I)=Z(VI).

If we restrict our attention to radical ideals, is Z a bijection?

<u>No</u>: Let R = R[x, y]. Then $x^2 + y^2$ is irreducible, Thus $(x^2 + y^2)$ and (x, y) are both prime and thus radical. However, the zero set of each is (0, 0).

The Nullstellensatz says that if k is algebraically closed, we do get a bijection:

<u>Hilbert's Nullstellensatz</u>: Let k be algebraically closed and $I \subseteq k[\pi, ..., \pi_n]$ an ideal. Then $I(Z(I)) = \sqrt{I}$. (Thus I is a left inverse when Z is restricted to radical ideals) In order to prove this, we first need the following. Weak <u>Nullstellensatz</u>: If k is algebraically closed and $I \neq k[x_1,...,x_n]$ a proper ideal, then $Z(I) \neq \emptyset$. Pf: Find a maximal ideal $m \supset I$. Thus $Z(m) \subseteq Z(I)$. Claim: Any maximal ideal $m \subseteq k[x_1,...,x_n]$ is of the form $(\pi_1 - \alpha_1,...,\pi_n - \alpha_n), \alpha_i \in k$. (we'll prove this later, after more theory.)

So
$$Z(m) = \{(a_1, \dots, a_n)\}$$
. In particular, $Z(I) \neq \emptyset$. \Box

<u>Proof of Nullstellensatz</u>: We know $VI \subseteq I(Z(I))$.

 $let I = (f_{1}, \dots, f_{r}). \quad Suppose g \in I(Z(I)).$

Let $R = k(x_{1}, ..., x_{n})$ and $S = k(x_{1}, ..., x_{n+1})$. Define $J = (f_{1}, ..., f_{r}, x_{n+1}g - 1) \subseteq S$.

What is $Z(J) \subseteq A^{n+1}$? If $P \in Z(J)$ then $f_i(P) = 0 \forall i$, so g(P) = 0. Thus, $\chi_{n+1}g - I$ evaluated at P is not O. $\Longrightarrow Z(J) = \emptyset$.

The weak Nullstellensatz implies that J=S, so IEJ.

=>
$$\sum a_i f_i + b(x_{n+1}g - 1) = 1$$
 for some $a_{1,...,a_r,b} \in S$.

Let N be the highest power of x_{n+1} appearing in the equation, and set $y = \frac{1}{\pi_{n+1}}$,

Multiplying both sides of the equation by y^N and cancelling all the x_{n+1} 's yields

$$\sum \widetilde{a}_i f_i + \widetilde{b}(g - y) = y^N$$
, where $\widetilde{a}_{i,...,}\widetilde{a}_{r,i} \widetilde{b} \in k[x_{i,...,}x_{n,i}y]$.

so g ∈ √I. []

This thus implies that for k=k, there is a one-to-one correspondence

$$\begin{cases} radical ideals \\ I \subseteq k[\pi_1, ..., \pi_n] \end{cases} \longleftrightarrow \begin{cases} algebraic & s+s \\ X \subseteq A^n \end{cases} \end{cases}$$
$$\xrightarrow{T} \longrightarrow Z(I)$$
$$I(x) \longleftrightarrow X$$